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This research demonstrates the effectiveness of Gaussian distribution method in aligning Regional Climate
Model (RCM) outputs with historical temperature data from India Meteorological Department (IMD), Pune.
The study focuses on applying bias correction, primarily on mean and coefficient of variation statistics, for
daily maximum and minimum temperatures using the RCA4 RCM for Junagadh district of Saurashtra region,
Gujarat. For the period 1951-2005, raw RCM data consistently underestimated the observed IMD temperatures.
Post-correction, the R² values improved significantly—from 0.917 to 1 for maximum temperatures and from
0.879 to 1 for minimum temperatures during calibration period, and from 0.92 to 0.99 and 0.875 to 0.999,
respectively, during validation period. Similarly, the alignment of the coefficient of variation improved, with
R² values increasing from 0.868 to 1 and 0.661 to 1 for calibration, and from 0.814 to 0.978 and 0.597 to 0.995
for validation. Despite these improvements, skewness remained negative in most months, and positive
kurtosis persisted in certain months, indicating areas for further refinement. For future period (2006-2100),
under RCP 2.6, bias-corrected mean temperatures ranged from 29.50°C to 31.85°C for maximum temperatures
and from 13.71°C to 27.26°C for minimum temperatures, compared to raw RCM projections of 14.65°C to
15.64°C and 2.03°C to 24.15°C, respectively. Under RCP 4.5 and RCP 8.5, similar trends were observed, with
mean temperatures, standard deviation, and CV showing consistent patterns. There was positive skewness
in winter and negative skewness in summer, along with positive kurtosis in both colder and warmer months.
The study reveals, bias correction significantly improved the accuracy of the RCA4 RCM in simulating daily
maximum and minimum temperatures during both the calibration (1951-1995) and validation (1996-2005)
periods, aligning the corrected data closely with IMD observations. Projections under various RCPs indicate
a warming trend with continued skewness and kurtosis, suggesting a potential for more extreme temperature
events in future.
Key words: Bias Correction, Gaussian distribution Method, Regional Climate Model (RCM), Temperature
Variability.
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ABSTRACT

Introduction
Climate change refers to alterations in expected

weather patterns. The IPCC’s fourth assessment report
states that “warming of climate system is evident” based
on observed increases in global air and ocean
temperatures, widespread snow and ice melting, and
rising sea levels. Climate may change in different ways,
over different time scales and at different geographical
scales. Since climate is changing, scientists have grown
interest in global warming, due to mankind’s impact on
climate system, through the enhancement of natural

greenhouse effect. Carbon dioxide concentration scenarios
project an increase in CO2 from 372 ppm to between 500
and 950 ppm by the year 2100, and the potential effect on
temperature, humidity, and plant responses to
environmental factors are complex and becoming topic for
our concern. For 2100, mean daily temperature is projected
to be increase in range from 1.2oC to 6.8oC depending on
greenhouse gas emissions (Snyder et al., 2013). On the
bad side, higher temperatures are often associated with
increases in evapotranspiration (ET), heat stress, and pest
infestations. Climate change study for 21st century was
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carried out by Kohli et al., (2006) and it revealed that
PRECIS simulated marked increase in temperature
towards the end of the 21st century for India.

Lunagaria et al., (2012) have reported that there is a
large scale of uncertainty in trends of different climatic
parameters in the state of Gujarat. GCMs are widely
used for projection of future climatic data (Ahmed et al.,
2019 and Sonali and Kumar 2020). General Circulation
Models (GCMs) are often affected by uncertainties
mainly due to low resolutions (approximately 100-250
Km) that inevitably lack regional scale details (Randall
et al., 2007). Several downscaling methods have been
developed to mutate the large-scale information of GCMs
to finer scales (25-50 Km), resulting in RCMs
(Teutschbein and Seibert, 2012; Maraun, 2016). The
Regional Climate Models (RCM) is also known as a
limited area model. It is the best-known toll for the
downscaling of climatic data from the output of a GCM
and it makes the prediction for a particular region. It has
a higher spatial resolution and provides more reliable
results on a regional scale as compared to GCMs (Chen
et al., 2013).

The advantages of RCM over GCM are: RCMs have
higher spatial resolution (10-50 km) compared to GCMs
(100-250 km), enabling better representation of local
topography and regional features. This higher resolution
allows RCMs to more accurately simulate local climate
processes and extreme weather events (Hulme et al.,
2001). RCMs also provide finer temporal resolution,
improving short-term climate analysis. They are excellent
for dynamical downscaling, taking broad-scale GCM
outputs and producing detailed regional climate
projections. RCMs can be customized to focus on specific
regions, using region-specific parameterizations for
greater accuracy. This makes RCMs invaluable for
localized climate projections, impact studies, and informing
regional policy and adaptation strategies.

Bhatu and Rank (2017) used RCM data to simulate
climate for Jamnagar, revealing an significant warming
trends in both daily minimum and maximum temperatures
from 1961 to 2100. The study highlighted a stronger
warming trend in daily minimum temperatures,
underscoring regional climate shifts projected by RCMs.

Rank et al., (2022) demonstrated that Gaussian
distribution mapping effectively corrected the mean and
coefficient of variation (Cv) in RCA4 RCM-simulated
temperatures for Junagadh, Gujarat, achieving a strong
goodness of fit in both calibration and validation periods.
The approach maintained original skewness (Cs) and
kurtosis (Ck) values, making it a robust method for RCM
temperature bias correction in future scenarios.

Several authors have discussed about the limitations
of RCM (Christensen et al.,, 1998; Varis et al.,, 2004;
Deque, 2007; Teutschbein and Seibert, 2012), in terms of
incorrectly yield extreme temperatures. For this reason,
several bias-correction (BC) methods were developed
to overcome the significant bias in RCMs, adapting
simulated data to local observations in terms of mean
and variance (scaling methods) or distribution probabilities.
There are various types of BC methods such as the
difference method (DM), linear scaling (LS) or statistical
methods (Lenderink et al., 2007), quantile mapping (QM)
(Buonomo et al., 2007), and probability density functions
(Piani et al., 2010) to correct the biases present in GCM-
RCM outputs for various impact studies (Enayati et al.,
2021).

CORDEX (Coordinated Regional Climate
Downscaling Experiment) https://cordex.org data often
contain biases, necessitating correction for accurate future
climate simulations. This study analyses temperature
projections from RCA4 RCM under RCP 2.6, RCP 4.5,
and RCP 8.5 scenarios, comparing future data (post-
2006) against historical values (1961-2005). The RCPs
reflect varying greenhouse gas emission pathways, with
RCP 8.5 being the most pessimistic, RCP 4.5 showing
stabilization by 2100, and RCP 2.6 representing significant
emission reductions. With rising extreme climate events,
evaluating bias correction methods, such as distribution
mapping, is essential to improve model reliability and
understand climate change impacts.

Material and Methods
Study Area

The study area is Junagadh, a city in Gujarat.
Junagadh (21.5222° N, 70.4579° E), is located at the base
of the Girnar hills. It has a tropical savanna climate,
featuring hot summers (March to June), a monsoon season
(July to September), and mild winters (October to
February). Average temperatures range from about 20°C
in winter to 40°C in summer.

Fig. 1: Study area map showing Junagadh District.



Data Collection
Gridded data of temperature prepared by Indian

Meteorological Department (IMD) for the Indian regions
was used in this research work. Daily Gridded data of
daily maximum & minimum temperature data 0.5 × 0.5
degree was collected. The data from IMD is available in
Network Common Data Format (NetCDF). The add in
called netcd4excel can be downloaded and installed to
access the data in NetCDF. The in Network Common
Data Format (NetCDF) data was then converted to Excel
format in Arc-GIS.

Climatic data was used to study the future prediction
of climate change. Regional climate models are best
models to understand and project the changes in climate.
Climate change data was downloaded from CORDEX-
South Asia Multi Models Output site (http://
cccr.tropmet.res.in/cordex/files/downloads.jsp). The
CORDEX data given by Centre for Climate Change
Research, Indian Institute of Tropical Meteorology, Pune.
The CORDEX regional climate model (RCM) simulations
for the European domain (EURO-CORDEX) are
conducted at two different spatial resolutions, the general
CORDEX resolution of 0.44 degree (EUR-44, ~50 km)
and additionally the finer resolution of 0.11 degree (EUR-
11, ~12.5km). These include projected changes in daily
Temperature (°C) using Representative Concentration
Pathway (RCP) 2.6 Scenario, 4.5 scenario and 8.5
scenario, for historical period as well as for future period.

Historical records of daily maximum and minimum
temperature of 55 years (1951-2005) were obtained from
IMD and maximum and minimum simulated temperature
for Junagadh was obtained by CORDEX for different
RCPs. Baseline period (1951-2005) was compared to
and that of during the future periods (2006-2100) for the
RCP 2.6, RCP 4.5 and 8.5 scenario were used for the
future projection. RCM simulations of temperature
require careful handling due to their tendency to exhibit
significant biases, primarily stemming from systematic
model errors, such as imperfect conceptualization,
discretization, and spatial averaging within grid cells.
These biases complicate the direct use of RCM outputs
for hydrological impact studies. A recommended approach
to address these issues is the use of an ensemble of RCM
simulations combined with bias correction techniques. Bias
correction methods adjust the simulated data to align more
closely with observed values. In this context, data from
1951 to 1995 were used for calibration, while the period
from 1996 to 2005 served for validation. A probability
distribution-based scaling method adjusted RCM-
simulated temperatures to observed values by modeling
the annual temperature cycle as a normal distribution with
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monthly-specific means and standard deviations.
Distribution Mapping Method

The Distribution Mapping (DM) method aims to align
the distribution function of raw data with that of observed
data, adjusting the mean, standard deviation, and quantiles
while preserving extreme values. Despite its
effectiveness, the method has limitations due to assumption
that both observed and raw meteorological variables
follow the same proposed distribution, potentially
introducing new biases. For temperature time series, the
Gaussian distribution, characterized by the location
parameter  (mean) and scale parameter (standard
deviation), is typically assumed to be the best fit. The
scale parameter ó influences the spread of the distribution:
a smaller  results in a more compressed distribution
with lower probabilities of extreme values, whereas a
larger  results in a more stretched distribution with higher
probabilities of extremes. The location parameter 
directly affects the mean, thereby determining the position
of the distribution. For temperature adjustments, the
process involves using the Gaussian (normal) CDF (FN)
cumulative distribution function (CDF) and its inverse
(FN

-1).
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Where,
T*

contr = corrected value of temperature of control period
Tcontr = uncorrected value of temperature of control period
T*

scen = corrected value of temperature for scenario period
Tscen= uncorrected value of temperature of scenario period
FN= Gaussian CDF
F-1

N= Inverse Gaussian CDF
µcontr= monthly mean of simulated time series of daily

temperature during for control period
2

obs = monthly standard deviation of observed time
series of temperature during control period

µobs= monthly mean of observed time series of daily
temperature during control period

2
contr = monthly standard deviation of simulated time

series of daily temperature during control period.
Results and Discussion

Study focused on bias corrections for daily maximum
and minimum temperatures, covering both a baseline
period (1951-2005) and future scenarios (2006-2100). It
involved calibration (1951-1995) and validation (1996-
2005) phases, comparing simulated data with actual



observations. Specifically, bias correction was applied to
temperatures simulated by RCA4 for Junagadh, using
observed data for comparison. The analysis provided
temperature data for both control period (1951-2005) and
projected future period (2006-2100).
Control Period (1951-2005)

Daily maximum temperature
Fig. 2 and 3 display the computed monthly mean of

daily observed maximum temperatures alongside Raw
RCM and Bias corrected RCM values for Junagadh
during the calibration period (1951-1995) and validation
period (1996-2005). The bias correction utilized Gaussian
distribution method, focusing on mean and coefficient of
variation statistics.

In Fig. 2, Raw RCM consistently underestimated
observed monthly maximum temperatures throughout the
calibration period. This trend persisted in Fig. 3 during
the validation period. However, following the application
of Gaussian bias correction method, both calibration (Fig.
2) and validation (Fig. 3) periods showed improved
agreement between Bias corrected RCM and observed
temperatures across all 12 months of the year. This
adjustment indicates that Gaussian distribution method
effectively aligned the monthly mean values of daily
maximum temperatures from the RCM with actual
observed values for Junagadh, enhancing the model’s
performance in reflecting real-world conditions.

Fig. 4 and 5 illustrate the relationship between the
monthly mean of observed maximum temperatures, Raw
RCM, and Bias corrected RCM values for Junagadh

Fig. 2: Comparison of monthly mean of observed, raw and
bias corrected daily maximum temperature during
calibration period-1951-1995.

Fig. 3: Comparison of monthly mean of observed, raw and
bias corrected daily maximum temperature during
validation period-1996-2005.

Fig. 4: Comparison of monthly mean of observed, raw and
bias corrected daily maximum temperature during
calibration period-1951-1995.

Fig. 5: Comparison of monthly mean of observed, raw and
bias corrected daily maximum temperature during
validation period-1996-2005.
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during the calibration period (1951-1995) and validation
period (1996-2005). The evaluation includes the goodness
of fit (R2) between Raw RCM and Bias corrected RCM.

In Fig. 4, the goodness of fit (R2) between Raw RCM
and Bias corrected RCM was 0.917 and 1 for calibration
period (1951-1995), respectively. Similarly, Fig. 5 shows
R2 values of 0.92 and 0.99 for validation period (1996-
2005). These results indicate that the Gaussian distribution
method effectively corrected the first moment (mean),
aligning Raw RCM values closely with Bias corrected
RCM and observed temperatures.

Fig. 6 and 7 present coefficient of variation for
observed maximum temperatures, Raw RCM, and Bias
corrected RCM values in Junagadh during the calibration

and validation periods. The coefficient of variation
measures variability relative to the mean.

In Fig. 6, Raw RCM daily maximum temperatures
exhibited a higher CV compared to observed maximum
temperatures across all months during the calibration
period. However, after applying bias correction, the CV
of Bias corrected RCM aligned closely with observed
values, indicating improved accuracy in capturing
variability.

Similarly, in Fig. 7 for the validation period (1996-
2005), both observed and bias corrected RCM showed
lower coefficient of variation compared to Raw RCM
for all months. Post-correction, Bias corrected RCM CV
closely matched observed values, underscoring the
effectiveness of the bias correction method in aligning
model outputs with observed variability.

Fig. 8 and 9 depict the relationship between the
monthly CV of observed maximum temperatures, Raw
RCM, and Bias corrected RCM values for Junagadh
during the calibration period (1951-1995) and validation

Fig. 6: Comparison of Coefficient of Variation observed, raw
and bias corrected daily maximum temperature during
Calibration period-1951-1995.

Fig. 7: Comparison of Coefficient of Variation observed, raw
and bias corrected daily maximum temperature during
Validation period-1996-2005.

Fig. 8: Comparison of Coefficient of Variation observed, raw
and bias corrected daily maximum temperature during
Calibration period-1951-1995.

Fig. 9: Comparison of Coefficient of Variation observed, raw
and bias corrected daily maximum temperature during
Validation period-1996-2005.
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period (1996-2005). These results suggest that while
Gaussian distribution method corrected the CV effectively
in the calibration period, there were some discrepancies
observed in the validation period.

Fig. 10 and 11 illustrate the comparison of skewness
coefficients (Cs) for observed maximum temperatures,
Raw RCM, and Bias corrected RCM values in Junagadh
during the calibration and validation periods. Skewness
measures the asymmetry of the distribution.

In the calibration period (Fig. 10), skewness
coefficients were negative for all months across Raw
RCM and Bias corrected RCM, indicating a tendency
towards lower values relative to the mean. However, in
the validation period (Fig. 11), skewness coefficients were
positive for March and September and negative for other
months. This pattern suggests a departure from normality
in these months, which the Gaussian bias correction
method did not fully correct.

Fig. 12 and 13 depict the comparison of kurtosis
coefficients (Ck) for observed maximum temperatures,

Fig. 10: Comparison of Skewness Coefficient of observed,
raw and bias corrected daily maximum temperature
during Calibration Period-1951-1995.

Fig. 11: Comparison of Skewness Coefficient of observed,
raw and bias corrected daily maximum temperature
during Validation Period-1996-2005.

Fig. 12: Comparison of Kurtosis Coefficient of observed, raw
and bias corrected daily maximum temperature during
Calibration Period-1951-1995.

period (1996-2005). The assessment includes the
goodness of fit (R2) between Raw RCM and Bias
corrected RCM.

In Fig. 8, the goodness of fit (R2) between Raw RCM
and Bias corrected RCM was 0.868 and 1 for the
calibration period (1951-1995), respectively, indicating a
close match between the datasets. Conversely, Fig. 9
shows R2 values of 0.814 and 0.978 for the validation

Fig. 13: Comparison of Skewness Coefficient of observed,
raw and bias corrected daily maximum temperature
during Validation Period-1996-2005.

Fig. 14: Comparison of monthly mean of observed, raw and
bias corrected daily minimum temperature during
calibration period-1951-1995.
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were positive for all months across Raw RCM and Bias
corrected RCM, indicating heavier tails in the distribution
compared to the normal distribution. Similarly, in the
validation period (Fig. 13), kurtosis coefficients remained
positive across all months, suggesting persistent deviations
from normality. These results indicate that while the
Gaussian bias correction method effectively adjusted the
mean and variability (first and second moments), it did
not fully correct the skewness (third moment) and kurtosis
(fourth moment) of the distribution.

Daily minimum temperature
Fig. 14 and 15 display the computed monthly mean

of daily observed minimum temperatures, Raw RCM,
and Bias corrected RCM values for Junagadh during the
calibration period (1951-1995) and validation period (1996-
2005), respectively. The bias correction employed the
Gaussian distribution mapping method, focusing on mean
and coefficient of variation statistics.

Fig. 14 shows that Raw RCM underestimated the
observed monthly minimum temperatures across all
months during the calibration period. A similar trend is
observed in Fig. 15 for the validation period. However,
after applying Gaussian bias correction method, the
monthly means for both calibration (Fig. 14) and validation
periods (Fig. 15) of daily minimum temperatures aligned
closely with the actual observed values across all 12
months of the year.

Fig. 16 and 17 illustrate the relationship between the
monthly mean of observed minimum temperatures, Raw
RCM, and Bias corrected RCM values for Junagadh
during calibration period (1951-1995) and validation period
(1996-2005). The evaluation includes the goodness of fit
(R2) between Raw RCM and Bias corrected RCM.

In Fig. 16, the goodness of fit (R2) between Raw
RCM and Bias corrected RCM was 0.879 and 1,
respectively, for calibration period (1951-1995). Similarly,
Fig. 17 shows R2 values of 0.875 and 0.999 for validation

Fig. 15: Comparison of monthly mean of observed, raw and
bias corrected daily minimum temperature during
validation period-1996-2005.

Fig. 16: Comparison of monthly mean of observed, raw and
bias corrected daily minimum temperature during
calibration period-1951-1995.

Fig. 17: Comparison of monthly mean of observed, raw and
bias corrected daily minimum temperature during
validation period-1996-2005.

Raw RCM, and Bias corrected RCM values in Junagadh
during the calibration and validation periods. Kurtosis
measures the “tailedness” of the distribution, specifically
the thickness of the tails relative to the normal distribution.

In the calibration period (Fig. 12), kurtosis coefficients

Fig. 18: Comparison of Coefficient of Variation of observed,
raw and bias corrected daily minimum temperature
during Calibration Period 1951-1995.
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period (1996-2005). These results indicate that the
Gaussian distribution method effectively corrected the
first moment (mean), aligning Raw RCM values closely
with Bias corrected RCM and observed minimum
temperatures.

Fig. 18 and 19 present the CV for observed minimum
temperatures, Raw RCM, and Bias corrected RCM
values in Junagadh during the calibration and validation
periods.

In Fig. 18, Raw RCM daily minimum temperatures
exhibited a higher CV compared to observed minimum
temperatures across all months during the calibration
period. However, after applying bias correction, the
coefficient of variation of Bias corrected RCM closely
matched observed values, indicating improved accuracy
in capturing variability.

Similarly, in Fig. 19 for validation period (1996-2005),
both observed and bias corrected RCM showed lower
CV compared to Raw RCM for all months. Post-
correction, Bias corrected RCM closely aligned with
observed values, underscoring the effectiveness of the
bias correction method in aligning model outputs with
observed variability.

Fig. 20 and 21 depict the relationship between the
monthly CV of observed minimum temperatures, Raw
RCM, and Bias corrected RCM values for Junagadh
during calibration period (1951-1995) and validation period
(1996-2005). The analysis includes the goodness of fit
(R2) between Raw RCM and Bias corrected RCM.

In Fig. 20, the goodness of fit (R2) between Raw
RCM and Bias corrected RCM was 0.661 and 1,
respectively, for the calibration period (1951-1995),

indicating a strong alignment between the datasets.
Conversely, Fig. 21 shows R2 values of 0.597 and 0.995
for the validation period (1996-2005). These results
suggest that while the Gaussian distribution method
corrected the CV effectively in calibration period, there were
some discrepancies observed in the validation period.

Fig. 19: Comparison of Coefficient of Variation of observed,
raw and bias corrected daily minimum temperature
during Validation Period 1996-2005.

Fig. 20: Comparison of Coefficient of Variation of observed,
raw and bias corrected daily minimum temperature
during Calibration Period 1951-1995.

Fig. 21: Comparison of Coefficient of Variation of observed,
raw and bias corrected daily minimum temperature
during Validation Period 1996-2005.

Fig. 22: Comparison of Skewnwss Coefficient of Variation of
observed, raw and bias corrected daily minimum
temperature during Calibration Period 1951-1995.
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Fig. 22 and 23 illustrate the comparison of skewness
coefficients (Cs) for observed minimum temperatures,
Raw RCM, and Bias corrected RCM values in Junagadh
during the calibration and validation periods. Skewness
measures the asymmetry of the distribution.

In the calibration period (Fig. 22), skewness
coefficients were negative for all months except
November across Raw RCM and Bias corrected RCM,
indicating a tendency towards lower values relative to
the mean. However, in the validation period (Fig. 23),
skewness coefficients were positive for November and
negative for the remaining months. This pattern suggests
deviations from normality, which the Gaussian bias
correction method did not fully address.

Fig. 24 and 25 depict the comparison of kurtosis
coefficients (Ck) for observed minimum temperatures,
Raw RCM, and Bias corrected RCM values in Junagadh
during the calibration and validation periods. In the calibration period (Fig. 24), kurtosis coefficients

were positive for May to August and December, indicating
heavier tails in the distribution compared to the normal
distribution. For the remaining months, kurtosis
coefficients were negative, suggesting a lighter tail
distribution. Similarly, in the validation period (Fig. 25),
kurtosis coefficients were positive for all months, indicating
persistent deviations from normality.

These results indicate that while the Gaussian bias
correction method effectively adjusted the mean and
variability (first and second moments), it did not fully
correct the skewness (third moment) and kurtosis (fourth
moment) of the distribution.
Future Period (2006-2100)

RCP 2.6
Daily maximum temperature
Fig. 26, 27, 28 and 29 shows the statistical

Fig. 23: Comparison of Skewnwss Coefficient of Variation of
observed, raw and bias corrected daily minimum
temperature during Validation Period 1996-2005.

Fig. 24: Comparison of Kurtosis Coefficient of Variation of
observed, raw and bias corrected daily minimum
temperature during Calibration Period 1951-1995.

Fig. 25: Comparison of Kurtosis Coefficient of Variation of
observed, raw and bias corrected daily minimum
temperature during Validation Period 1996-2005.

Fig. 26: Comparison of raw and bias corrected RCM monthly
mean of daily maximum temperature during future
Period 2006-2100 for RCP 2.6
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3.09 to 5.46 across the months. In contrast, the SD values
for the BC RCM are lower, ranging from 1.25 to 2.48,
indicating that bias correction reduces the variability in
temperature projections.

Fig. 27 shows the coefficient of variation (Cv), which
normalizes SD by the mean, also shows differences
between the two models. The raw RCM has higher Cv
values ranging from 0.10 to 0.32, reflecting relatively
higher variability compared to the BC RCM, which shows
Cv values ranging from 0.04 to 0.08.

Fig. 28 examining skewness coefficient (Cs), both
models exhibit similar patterns with positive skewness
values in January, February, November, and December,
and negative values from March to October. This
indicates a distribution skewed towards higher
temperatures during winter months and lower
temperatures during summer months in both raw and bias-
corrected simulations.

Fig. 29 shows Kurtosis coefficient (Ck) reveals
varying distributions across months. Both models show
positive kurtosis in certain summer months (June and July)
and negative kurtosis in other months, suggesting
differences in the likelihood of extreme temperature
events between seasons.

Daily minimum temperature
Fig. 30, 31, 32 and 33 shows the statistical

characteristics of raw and bias-corrected regional climate
model (RCM) simulations from 2006 to 2100. Fig. 30
shows the mean temperatures across both datasets show
distinct seasonal variations, with January experiencing
the lowest temperatures ranging from 2.03°C in raw data
to 13.71°C in bias-corrected data, and July recording the
highest temperatures ranging from 24.15°C in raw data
to 27.26°C in bias-corrected data. This overall increase

Fig. 27: Comparison of CV of raw and BC RCM maximum
temperature during future Period 2006-2100 for RCP
2.6.

Fig. 28: Comparison of Skewness Coefficient of raw and BC
RCM maximum temperature during future Period 2006-
2100 for RCP 2.6.

Fig. 29: Comparison of Kurtosis Coefficient of raw and BC
RCM maximum temperature during future Period 2006-
2100 for RCP 2.6.

characteristics of raw and bias-corrected regional climate
model (RCM) simulations from 2006 to 2100. Fig. 26
shows the mean temperatures, the raw RCM shows
lower values throughout the year, ranging from 14.65°C
in January to 15.64°C in December, while the bias-
corrected (BC) RCM exhibits consistently higher mean
temperatures, ranging from 29.50°C in January to 31.85°C
in December. This illustrates the impact of bias correction,
which generally increases the mean temperature
projections.

The standard deviation (SD), the raw RCM displays
higher variability in temperature with values ranging from

Fig. 30: Comparison of raw and bias corrected RCM monthly
mean of daily minimum temperature during future
Period 2006-2100 for RCP 2.6
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in mean temperatures after bias correction underscores
warming trend projected throughout the century.

Standard deviation (SD) values across months exhibit
notable differences between raw and bias-corrected data.
Raw RCM data shows wider variability, with SD ranging
from 1.61°C to 4.74°C, indicative of higher uncertainty
in temperature projections. In contrast, bias-corrected
RCM data shows a narrower range of SD values from
0.54°C to 2.50°C, suggesting that bias correction has
effectively reduced the spread of temperature projections
and improved consistency across months.

Fig. 31 shows the coefficients of variation (Cv) which
provides the additional insights into the relative variability
of temperatures. In the raw RCM data, Cv values range
from 0.07 to 1.72, reflecting varied levels of deviation
from the mean temperature. Bias correction significantly
lowers Cv values, narrowing the range from 0.02 to 0.15,
indicating a more uniform distribution of temperatures
and greater predictability in climate model outputs.

Despite these adjustments in mean and variability,
(Fig. 32) skewness coefficient (Cs) and (Fig. 33) kurtosis
coefficient (Ck) values remain largely consistent between
raw and bias-corrected data. Skewness ranges from -

1.27 to 1.15 across both datasets, indicating similar
distribution shapes with occasional deviations towards
higher or lower temperatures in specific months. Kurtosis
values, ranging from -0.79 to 2.46, suggest that while
bias correction adjusts mean temperatures, it does not
significantly alter the likelihood of extreme temperature
events within the projected climate scenarios.

RCP 4.5
Daily maximum temperature
Fig. 34, 35, 36 and 37 shows the statistical

characteristics of raw and bias-corrected regional climate
model (RCM) simulations for the period 2006-2100. Fig.
34 shows the mean daily maximum temperatures, the
raw RCM ranges from 13.50°C in January to 33.78°C in
July, with a distinct seasonal variation showing warmer
temperatures in summer and cooler temperatures in
winter. In contrast, the bias-corrected (BC) RCM
consistently shows higher mean temperatures across all
months, ranging from 29.10°C in January to 35.58°C in
July, reflecting the adjustments made through bias
correction to better align model outputs with observed
data.

Fig. 31: Comparison of CV of raw and BC RCM minimum
temperature during future Period 2006-2100 for RCP
2.6.

Fig. 32: Comparison of Skewness Coefficient of raw and BC
RCM minimum temperature during future Period 2006-
2100 for RCP 2.6.

Fig. 33: Comparison of Kurtosis Coefficient of raw and BC
RCM minimum temperature during future Period 2006-
2100 for RCP 2.6.

Fig. 34: Comparison of raw and bias corrected RCM monthly
mean of daily maximum temperature during future
Period 2006-2100 for RCP 4.5.
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The standard deviation (SD) of daily maximum
temperatures is generally higher in the raw RCM
compared to the BC RCM. For example, SD ranges from
1.15 to 4.97 in the raw RCM and from 1.15 to 2.31 in the
BC RCM. This indicates that bias correction reduces
the variability in temperature projections, leading to
smoother and more consistent model outputs.

Fig. 35 shows coefficient of variation (Cv), which
normalizes SD by the mean, also shows differences
between the two models. The raw RCM exhibits higher
Cv values ranging from 0.09 to 0.29, while the BC RCM
displays lower Cv values ranging from 0.03 to 0.07,
further emphasizing the reduction in variability after bias
correction.

Fig. 36 and 37 shows the Skewness coefficient (Cs)
and kurtosis coefficient (Ck) coefficients, which provide
insights into the shape and tails of the temperature
distribution. Cs values show positive skewness in January,
February, and December, indicating a distribution skewed
towards higher temperatures during these months.
Conversely, negative Cs values from March to November
suggest a distribution skewed towards lower
temperatures. Ck values indicate varying degrees of

kurtosis across months, with positive values in June and
July.

Daily minimum temperature
Fig. 38, 39, 40 and 41 shows the statistical

characteristics of raw and bias-corrected regional climate
model (RCM) simulations for the period 2006-2100. Fig
38 shows the raw RCM data begins with lower mean
temperatures, starting at 1.29°C in 2006 and gradually
rising to 2.99°C by 2100. In contrast, the bias-corrected
RCM data starts with substantially higher mean
temperatures of 13.29°C in 2006, reaching 16.26°C by
2100 after the bias correction process adjusts the model
outputs to better align with observed data.

The raw RCM data exhibits higher initial standard
deviation (SD) at 2.97°C in 2006, which decreases to
4.01°C by 2100. The bias-corrected RCM data, however,
starts with lower variability, indicated by an SD of 1.70°C
in 2006, remaining relatively stable over the century. This
reduction in variability post-bias correction enhances the
reliability of temperature projections, making them more
consistent and useful for local climate impact assessments.

Fig. 35: Comparison of CV of raw and BC RCM maximum
temperature during future Period 2006-2100 for RCP
4.5.

Fig. 36: Comparison of Skewness Coefficient of raw and BC
RCM maximum temperature during future Period 2006-
2100 for RCP 4.5.

Fig. 37: Comparison of Kurtosis Coefficient of raw and BC
RCM maximum temperature during future Period 2006-
2100 for RCP 4.5.

Fig. 38: Comparison of raw and bias corrected RCM monthly
mean of daily minimum temperature during future
Period 2006-2100 for RCP 4.5.

168 Ananya Mishra and H.D. Rank



Fig. 39 shows combined data shows a notable
difference in Cv between the raw and bias-corrected
RCM datasets. The raw RCM data starts with a Cv of
2.31 in 2006, indicating higher variability relative to mean
temperatures, which decreases gradually over time. In
contrast, the bias-corrected RCM data begins with a

significantly lower Cv of 0.13 in 2006 and maintains this
low variability throughout the century.

(Fig. 40) Skewness coefficient (Cs) and (Fig. 41)
kurtosis coefficient (Ck) values exhibit minimal change
between the raw and bias-corrected RCM data, indicating
that while bias correction adjusts mean temperatures and
reduces variability, it preserves the overall shape of the
temperature distribution. Cs tends to be positive in winter
and negative in summer months for both raw and bias-
corrected data, indicating asymmetry in temperature
distributions while Ck shows positive values during colder

Fig.  39: Comparison of CV of raw and BC RCM minimum
temperature during future Period 2006-2100 for RCP
4.5.

Fig. 40: Comparison of Skewness Coefficient of raw and BC
RCM minimum temperature during future Period 2006-
2100 for RCP 4.5.

Fig. 41: Comparison of Kurtosis Coefficient of raw and BC
RCM minimum temperature  during future Period
2006-2100 for RCP 4.5.

Fig. 42: Comparison of raw and bias corrected RCM monthly
mean of daily maximum temperature during future
Period 2006-2100 for RCP 8.5

Fig. 43: Comparison of CV of raw and BC RCM maximum
temperature during future Period 2006-2100 for RCP
8.5.

Fig. 44: Comparison of Skewness Coefficient of raw and BC
RCM maximum temperature during future Period 2006-
2100 for RCP 8.5.
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and warmer months and negative values during
transitional periods.

RCP 8.5
Daily maximum temperature
Fig. 42, 43, 44 and 45 shows the statistical

characteristics of raw and bias-corrected regional climate

model (RCM) simulations for the period 2006-2100,
focusing on daily maximum temperatures. Fig. 42 shows
that the raw RCM shows a progression of mean
temperatures from 17.80°C in January to 15.57°C in
December, exhibiting a typical seasonal variation with
warmer temperatures in summer and cooler temperatures
in winter. In contrast, the bias-corrected (BC) RCM
consistently projects higher mean temperatures across
all months, ranging from 30.59°C in January to 31.77°C
in December, reflecting adjustments made through bias
correction to better align model outputs with observed
data.

Regarding variability, the standard deviation (SD) of
daily maximum temperatures is generally higher in the
raw RCM compared to the BC RCM. For instance, SD
ranges from 1.45 to 5.82 in the raw RCM and from 1.42
to 2.64 in the BC RCM, indicating that bias correction
reduces the variability in temperature projections, resulting
in more consistent model outputs.

Fig. 43 shows coefficient of variation (Cv), which
normalizes SD by the mean, shows lower values in the

Fig. 45: Comparison of Kurtosis Coefficient of raw and BC
RCM maximum temperature during future Period 2006-
2100 for RCP 8.5.

Fig. 46: Comparison of raw and bias corrected RCM monthly
mean of daily minimum temperature during future
Period 2006-2100 for RCP 8.5

Fig. 47: Comparison of CV of raw and BC RCM minimum
temperature during future Period 2006-2100 for RCP
8.5.

Fig. 48: Comparison of Skewness Coefficient of raw and BC
RCM minimum temperature during future Period 2006-
2100 for RCP 8.5.

Fig. 49: Comparison of Kurtosis Coefficient of raw and BC
RCM minimum temperature during future Period 2006-
2100 for RCP 8.5.
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BC RCM compared to the raw RCM. Cv values range
from 0.04 to 0.31 in the raw RCM and from 0.04 to 0.08
in the BC RCM, highlighting the reduction in variability
after bias correction.

Fig. 44 and 45 shows the Skewness coefficient (Cs)
and kurtosis coefficient (Ck) coefficients, which provide
insights into the distribution shape and tails of the
temperature data. Cs values indicate positive skewness
in January, February, April, May, and December,
suggesting a distribution skewed towards higher
temperatures during these months. Conversely, negative
Cs values in rest of months suggest a distribution skewed
towards lower temperatures. Ck values vary across
months, with positive values indicating heavier tails and
an increased likelihood of extreme temperature events,
particularly noticeable in the BC RCM during June, July,
and August.

Daily minimum temperature
Fig. 46, 47, 48 and 49 shows the statistical

characteristics of raw and bias-corrected regional climate
model (RCM) simulations for the period 2006-2100,
focusing on daily minimum temperature. Fig 46 shows
that in raw RCM, mean temperatures range from 2.33°C
in December to 27.25°C in June, displaying typical
seasonal variability with warmer temperatures in summer
and cooler temperatures in winter. Bias-corrected (BC)
RCM Shows consistently higher mean temperatures
across all months, ranging from 15.84°C in December to
29.39°C in June. Bias correction adjusts temperatures
upwards, aligning model outputs more closely with
observed data.

For raw RCM, SD ranges from 1.79°C in July to
5.37°C in February, indicating variability in temperature
projections throughout the year whereas for Bias-
corrected RCM, SD values are generally lower compared
to raw RCMs, ranging from 0.96°C in July to 3.00°C in
February. This reduction suggests that bias correction
smooths out variability in temperature predictions.

Fig. 47 shows that for raw RCM, Cv values range
from 0.07 to 1.44, indicating higher variability relative to
mean temperatures across months whereas for BC RCM,
Cv values are consistently lower compared to raw RCMs,
ranging from 0.03 to 0.18. This indicates that bias
correction reduces variability in temperature projections,
making them more consistent and reliable.

Fig. 48 shows positive Cs values in winter months
(January, February) and December suggest a distribution
skewed towards higher temperatures during these
periods. Negative Cs values in other months indicate
skewness towards lower temperatures.

Fig. 49 shows Positive Ck values in several months,
particularly in July and August for both raw and bias-
corrected RCMs, suggest heavier tails and a higher
likelihood of extreme temperature events during these
periods.

Conclusion
Based on the comprehensive bias correction analysis

conducted for daily maximum and minimum temperatures
in Junagadh, Gujarat, across both historical (1951-2005)
and future climate change scenarios (2006-2100), several
key findings emerge. The study employed the Gaussian
distribution method to correct simulated temperatures
from the RCA4 regional climate model, enhancing
alignment with observed data. Results for the control
period indicated significant underestimation by raw RCM
outputs, particularly in maximum temperatures, which
were effectively remedied by bias correction. This
adjustment improved mean temperature accuracy and
reduced variability, as evidenced by decreased coefficients
of variation and improved goodness of fit metrics (R2

values) across both calibration and validation periods.
However, the study noted limitations in fully correcting
skewness and kurtosis, especially in extreme temperature
events, suggesting areas for further refinement in bias
correction techniques. In the future period analysis, under
different RCP scenarios, bias correction consistently
elevated mean temperature projections while stabilizing
variability, thereby enhancing the reliability of long-term
climate projections for Junagadh.

In conclusion, the study underscores the effectiveness
of the Gaussian bias correction method in improving the
accuracy of regional climate model outputs for Junagadh’s
temperature profiles. This approach not only aligned
simulated temperatures more closely with observed data
but also enhanced the model’s ability to predict future
climate scenarios under various emission pathways. While
the method successfully adjusted mean values and
reduced variability, challenges remain in fully capturing
the distribution’s skewness and kurtosis, particularly in
extreme temperature months. Future research could
focus on refining bias correction techniques to address
these nuances and further enhance the reliability of
climate projections crucial for local and regional climate
change adaptation strategies.
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